
CHAPTER 5
DATA STRUCTURES AND ALGORITHMS

DATA STRUCTURE AND ALGORITHM 1

Queue
Data Structure

CONTENTS

 Queue definition,

 Operations on queue,

 Queue implementation

 Using array,

 Using linked lists,

 Circular queue,

 Priority queue

 Applications,

DATA STRUCTURE AND ALGORITHM 2

5.1. QUEUE

 A queue is a list in which insertions are permitted only at one end of the list called its rear/tail,

and all deletions are constrained to the other end called the front/head of the queue.

 Unlike stacks, a queue is open at both its ends.

 One end is always used to insert data (enqueue) and the other is used to remove data (dequeue).

 Queue follows First-In-First-Out (FIFO) methodology

 Real-world examples,

 a single-lane one-way road

DATA STRUCTURE AND ALGORITHM 3

CONT..

 Queues are one of the most common data processing structures.

 They are frequently used in most system software such as operating systems, network and

database implementations, and other areas.

 As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and Structures.

DATA STRUCTURE AND ALGORITHM 4

5.2. OPERATIONS ON QUEUE

Basic Operations

 enqueue() − add (store) an item to the queue.

 dequeue() − remove (access) an item from the queue.

Supportive operations

 getFront() − Gets the element at the front of the queue without removing it.

 isfull() − Checks if the queue is full.

 isempty() − Checks if the queue is empty.

DATA STRUCTURE AND ALGORITHM 5

ENQUEUE OPERATION

 Queues maintain two data pointers, front and rear.

 The following steps should be taken to enqueue (insert) data into a queue −

 Step 1 − Check if the queue is full.

 Step 2 − If the queue is full, produce overflow error and exit.

 Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

 Step 4 − Add data element to the queue location, where the rear is pointing.

 Step 5 − return success.

DATA STRUCTURE AND ALGORITHM 6

DEQUEUE OPERATION

 Accessing data from the queue is a process of two tasks − access the data where front is pointing and

remove the data after access.

 The following steps are taken to perform dequeue operation.

 Step 1 − Check if the queue is empty.

 Step 2 − If the queue is empty, produce underflow error and exit.

 Step 3 − If the queue is not empty, increment front pointer and access the data where front is pointing.

 Step 4 − remove the data.

 Step 5 − Return success.

DATA STRUCTURE AND ALGORITHM 7

5.3. QUEUES USING ARRAY

 The array-based queue is somewhat tricky to implement effectively.

 Create: This operation should create an empty queue.

 Is_Empty: This operation checks whether the queue is empty or not. This is confirmed by comparing the values of Front and
Rear.



DATA STRUCTURE AND ALGORITHM 8

Here max is the maximum initial size that is
defined.

CONT.

 Is_Full: When Rear points to the last location of the array, it indicates that the queue is full

 Add: This operation adds an element in the queue if it is not full. As Rear points to the last element of
the queue, the new element is added at the (rear + 1)th location.

DATA STRUCTURE AND ALGORITHM 9

CONT.

 Delete: This operation deletes an element from the front of the queue and sets Front to point to the next
element. We should first increment the value of Front and then remove the element.

 getFront: returns the element at the front, but unlike delete, this does not update the value of Front.

DATA STRUCTURE AND ALGORITHM 10

DATA STRUCTURE AND ALGORITHM 11

Let Q be an empty queue with Front = Rear = -1. Let max = 5.

0 1 2 3 4

Consider the following statements:

1. Enqueue (11)

2. Enqueue (12)

3. Enqueue (13)

4. Dequeue ()

5. Enqueue (14)

6. Dequeue ()

7. Dequeue ()

8. Dequeue ()

9. Dequeue ()

10. Enqueue (15)

11. Enqueue (16)

Front = −1

Rear = −1

DATA STRUCTURE AND ALGORITHM 12

Consider the following statements:
1. Enqueue (11)

2. Enqueue (12)

3. Enqueue (13)

4. Dequeue ()

5. Enqueue (14)

6. Dequeue ()

7. Dequeue ()

8. Dequeue ()

9. Dequeue ()

10.Enqueue (15)

11.Enqueue (16)

Here we get the Queue_empty error condition as

Front = Rear = 3

This statement will generate the message Queue_Full

because Rear = 4.

This means that the implementation

needs to be modified.

DRAWBACKS OF LINEAR QUEUE

1. The linear queue is of a fixed size.

2. An arbitrarily declared maximum size of queues leads to poor utilization of memory.

3. Array implementation of linear queues leads to the Queue_Full state even though the queue is not

actually full.

4. To avoid this, we need to move the entire queue to the original start location (if there are empty

locations) so that the first element is at the 0th location and Front is set to -1 (rear= rear-1).

This is obviously not a feasible solution as it is time consuming and involves a lot of data movement. This

becomes impractical, especially when the queue is of a large size.

DATA STRUCTURE AND ALGORITHM 13

CIRCULAR QUEUE

 Allows the queue to wraparound upon reaching the end of the array eliminates drawbacks of
linear queue.

 As we go on adding elements to the queue and reach the end of the array, the next element is
stored in the first slot of the array if it is empty.

 The queue is said to be full only when there are n elements in the queue.

DATA STRUCTURE AND ALGORITHM 14

0 1 2 … …. N-3 N-2 N-1

Enqueue index = (rear + 1) % Max

Dequeue index = (front + 1) % Max

DATA STRUCTURE AND ALGORITHM 15

Let Q be an empty queue with Front = Rear = -1. Let max = 5.

0 1 2 3 4

Consider the following statements:

1. Enqueue (10)

2. Enqueue (20)

3. Enqueue (30)

4. Enqueue (40)

5. Dequeue ()

6. Dequeue ()

7. Enqueue (50)

8. Enqueue (60)

9. Enqueue (70)

10. Enqueue (80)

DATA STRUCTURE AND ALGORITHM 16

Let Q be an empty queue with Front = Rear = -1. Let max = 5.

0 1 2 3 4

Consider the following statements:

1. Enqueue (10)

2. Enqueue (20)

3. Enqueue (30)

4. Enqueue (40)

5. Dequeue ()

6. Dequeue ()

7. Enqueue (50)

8. Enqueue (60)

9. Enqueue (70)

10.Enqueue (80)

Enqueue (80) will generate the message Queue_Full because

There are 5 elements in the queue.

QUEUE IMPLEMENTATION USING LINKED LIST

 We can use either side of the linked list to enqueue while the other side is used to dequeue.

To execute both operations in constant time we have to maintain tail pointer in addition to head
pointer.

DATA STRUCTURE AND ALGORITHM 17

56 12 70 8

Rear

56 12 70 8

Rear

PRIORITY QUEUE

 A priority queue is a collection of a finite number of prioritized elements.

 Elements can be inserted in any order in a priority queue, but when an element is removed from

the priority queue, it is always the one with the highest priority.

 The following rules are applied to maintain a priority queue:

1. The element with a higher priority is processed before any element of lower priority.

2. If there were elements with the same priority, then the element added first in the queue would get

processed first.

DATA STRUCTURE AND ALGORITHM 18

 Priority queues are used for implementing job scheduling by the operating system where jobs with
higher priority are to be processed first.

 A list of jobs carried out by a multitasking operating system; each background job is given a
priority level.

 Suppose in a computer system, jobs are assigned three priorities, namely, P, Q, R as first, second,
and third, respectively.

DATA STRUCTURE AND ALGORITHM 19

PRIORITY QUEUES IMPLEMENTATION

Implementation method 1

 Implemented using three separate queues, each following the FIFO behavior strictly as shown in
bellow.

DATA STRUCTURE AND ALGORITHM 20

In this example, jobs are always removed from the front of the

queue.

The elements in the second queue are removed only when the

first queue is empty, and

The elements from the third queue are removed only when the

second queue is empty, and so on.

PRIORITY QUEUES IMPLEMENTATION

Implementation method 2

 The second way of priority queue implementation is by using a structure for a queue.

 The highest priority element is at the front and that of the lowest priority is at the rear.

DATA STRUCTURE AND ALGORITHM 21

Struct QueueElement

{

int Data;

int priority;

};

CONT..

 The two ways to implement a priority queue are sorted list and unsorted list.

Sorted list: A sorted list is characterized by the following features:

 Advantage—Deletion is easy; elements are stored by priority, so just delete from the beginning of the list.

 Disadvantage—Insertion is hard; it is necessary to find the proper location for insertion.

 A linked list is convenient for this implementation such as the list in Fig. 5.9.

Unsorted list: An unsorted list is characterized by the following features:

 Advantage—Insertion is easy; just add elements at the end of the list.

 Disadvantage—Deletion is hard; it is necessary to find the highest priority element first.

 An array is convenient for this implementation.

DATA STRUCTURE AND ALGORITHM 22

APPLICATIONS OF QUEUES

 Queues are also very useful in a time-sharing computer system where many users share a system
simultaneously.

 Whenever a user requests the system to run a particular program, the operating system adds the
request at the end of the queue of jobs waiting to be executed.

 Now, when the CPU is free, it executes the job that is at the front of the job queue.

 Similarly, there are queues for shared I/O devices too. Each device maintains its own queue of
requests.

 Queues are also used in simulations and different problem solving operations. Read the reference
book for more information on applications of queues.

DATA STRUCTURE AND ALGORITHM 23

